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Linkage Analysis in the Presence of Errors I: Complex-Valued
Recombination Fractions and Complex Phenotypes
Harald H. H. Göring1,a and Joseph D. Terwilliger2,3,4

Departments of 1Genetics and Development and 2Psychiatry and 3Columbia Genome Center, Columbia University, and 4New York State
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Linkage is a phenomenon that correlates the genotypes of loci, rather than the phenotypes of one locus to the
genotypes of another. It is therefore necessary to convert the observed trait phenotypes into trait-locus genotypes,
which can then be analyzed for coinheritance with marker-locus genotypes. However, if the mode of inheritance
of the trait is not known accurately, this conversion can often result in errors in the inferred trait-locus genotypes,
which, in turn, can lead to the misclassification of the recombination status of meioses. As a result, the recombination
fraction can be overestimated in two-point analysis, and false exclusions of the true trait locus can occur in multipoint
analysis. We propose a method that increases the robustness of multipoint analysis to errors in the mode of
inheritance assumptions of the trait, by explicitly allowing for misclassification of trait-locus genotypes. To this
end, the definition of the recombination fraction is extended to the complex plane, as ; v is the recombinationV = v + ei
fraction between actual (“real”) genotypes of marker and trait loci, and is the probability of apparent but falsee

(“imaginary”) recombinations between the actual and inferred trait-locus genotypes. “Complex” multipoint LOD
scores are proven to be stochastically equivalent to conventional two-point LOD scores. The greater robustness to
modeling errors normally associated with two-point analysis can thus be extended to multiple two-point analysis
and multipoint analysis. The use of complex-valued recombination fractions also allows the stochastic equivalence
of “model-based” and “model-free” methods to be extended to multipoint analysis.

Introduction

Linkage is a phenomenon correlating the alleles/geno-
types of two or more syntenic loci, not genotypes of
marker loci to phenotypes influenced by the genotypes
of other loci. When one tries to map a disease-predis-
posing locus against a panel of marker loci by linkage
analysis, it is therefore necessary to convert the set of
observed disease phenotypes of all individuals in a ped-
igree into a set of disease-locus genotypes, which can be
analyzed for cosegregation with marker-locus genotypes.
When the mode of inheritance is incorrectly specified in
“model-based” linkage analysis, a well-known upward
bias in the estimation of the recombination fraction, v,
results (see Risch and Giuffra 1992). This bias occurs
because, in some meioses, in which the actual (“real”)
alleles at the trait and marker loci are inherited without
recombination, the inferred (“imaginary”) trait-locus al-
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leles are erroneously assumed to have undergone recom-
bination with the marker-locus alleles because of errors
in the trait-locus genotype assignments to some individ-
uals in the pedigree. This reduces the power to detect
linkage and leads to an inability to accurately estimate
the genomic position of the disease gene. In multipoint
analysis, false exclusions are common (see Risch and
Giuffra 1992), because misclassification errors can lead
to one’s mistaking actual double nonrecombinants for
apparent double recombinants between the disease gene
and the marker loci flanking its true chromosomal lo-
cation (Keats et al. 1990). This leads to the apparent
contradiction that recombination occurs between the
disease gene and its physical location on the chromo-
some. Of course, this issue arises only because apparent
recombination events observed during linkage analysis
may not be real but rather may be mere artifacts attrib-
utable to erroneously inferred genotypes, which give the
false impression that recombination has taken place,
whereas, in fact, no actual recombination had occurred.

In this article, we propose a probability model that
explicitly acknowledges the existence of erroneously ob-
served recombination events due to genotype errors at
the disease-predisposing locus. The recombination frac-
tion is partitioned into two components—the “real”
probability of recombination (v) between alleles of the
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Figure 1 Possible explanations for observed recombination
events. Only the relevant alleles are shown in the pedigree drawing.
Gametes that correspond to the four offspring possibilities are shown
below the pedigree (R and N refer to recombinants and nonrecom-
binants, respectively). I shows recombination between nonsyntenic loci
due to random assortment of chromosomes, independent of their
grandparental origin. II depicts crossing over, a mechanism by which
sister chromosomes exchange genetic material, which leads to the ex-
istence of recombinants between syntenic loci. III shows that an ob-
served recombination event can also be a mere artifact when errors
in assumed genotypes exist.

disease and marker loci and an “imaginary” component
(e) that corresponds to the probability of a meiosis being
misclassified with respect to recombination status be-
cause of genotype errors at the disease-predisposing lo-
cus (see Walley 1991 and Jaynes 1996). Representing
these components as a complex vector, , al-V = v � ei
lows us to obtain consistent estimates of the genomic
position of the disease locus and gives multiple two-
point and multipoint linkage analysis the same degree
of robustness to model errors at the trait locus as two-
point linkage analysis. This result applies to “model-
based” approaches as well as “model-free” methods
when performed by use of a deterministic “pseudo-
marker” algorithm for converting the observed phe-
notypes into genotypes, as shown elsewhere (see
Trembath et al. 1997; Terwilliger 1998; Göring and
Terwilliger 2000c; Terwilliger and Göring 2000).

Possible Explanations for Observed Recombination
Events

Let us first review the different explanations for an ob-
served recombination event, because this is central to the
understanding of this article. Recombination is said to
have occurred when alleles of two loci are inherited by
an offspring in a different combination than they were
inherited by his or her parent. In other words, a “re-
combination” of grandparental alleles occurred as the
grandchild received, from one parent, alleles that orig-
inated in two different grandparents. Alleles of loci lo-
cated on different chromosomes recombine with prob-
ability .5, because different chromosomes are inherited
independent of their respective grandparental origin
(Mendel 1866; process I in fig. 1). Two loci on the same
chromosome can recombine as a result of crossing over,
the physical process by which two chromosomes recip-
rocally exchange genetic material during meiosis (pro-
cess II in fig. 1). In addition, for syntenic and nonsyntenic
loci alike, genotype-assignment errors can lead to the
false inference that recombination has occurred,
whereas, in reality, it did not (process III in fig. 1). It is
essential to realize that the classical genetic concept of
recombination cannot be reduced to the molecular pro-
cess of crossing over (see Sarkar 1998). This article out-
lines a probability model for linkage analysis that allows
for apparent recombination due to trait-locus genotype
errors, and one of the companion articles (Göring and
Terwilliger 2000a) extends this model to apparent re-
combinations that result from marker-locus genotyping
errors.

Errors in the Assumed Trait-Locus Model

When a linkage analysis is performed, the genotypes of
the putative trait-predisposing locus are not known.

Since linkage is a phenomenon that correlates the gen-
otypes—not the phenotypes—of two or more loci, how-
ever, all forms of linkage analysis are necessarily per-
formed between marker- and trait-locus genotypes and
not between marker-locus genotypes and trait pheno-
types (see Terwilliger and Göring 2000 for more details).
It is therefore necessary to convert the observed trait
phenotypes into underlying trait-locus genotypes, to per-
form linkage analysis. One starts from a set of pheno-
types and pedigree relationships, and, on the basis of
some assumptions about the mode of inheritance of the
phenotype, a computer program is used to determine the
probability of each possible combination of trait-locus
genotypes for all individuals in the entire pedigree. Then,
linkage analysis is performed to estimate the frequency
of recombination between marker-locus genotypes and
these probabilistically assigned trait-locus genotypes and
to test whether this frequency is !50%.

The role of the trait-locus parameters that describe
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Figure 2 Probability model for misclassification of recombina-
tion status. The observed recombination status of a meiosis may be
misclassified because of errors in the assigned genotypes at the disease
locus. Notice that true recombinants are mistaken for apparent non-
recombinants and true nonrecombinants for apparent recombinants
with equal probability, , as explained in the text.e P(R ) = v(1 �obs

and the estimate of the recombinatione) � (1 � v)e = v � e � 2ve 1 v

fraction is biased upward if and .v ! 0.5 e 1 0

Figure 3 Complex recombination fraction. The recombination
fraction, , is modeled in the complex number system. Its real-V = v � ei
valued component v represents the true probability of recombination
between the disease locus (D) and the marker locus (M). The common
upward bias in the estimated recombination fraction, due to errors in
inferred trait-locus genotypes, is modeled as an imaginary component
of the recombination fraction, . The magnitude of the imaginaryei
component corresponds to the apparent recombination frequency be-
tween the actual and the assumed alleles of the trait locus. Note that
the frequency of an observed recombination is given by P(R ) =obs

.kVk = v � e � 2vets

penetrances and allele frequencies in linkage analysis is
to allow for probabilistic conversion of phenotypes into
genotypes. If the penetrances and genotype frequencies
at the trait-predisposing locus are known without error,
the process of estimating the probabilities of each com-
bination of trait-locus genotypes and then performing
linkage analysis between genotypes of the trait locus
and the marker locus leads to a consistent estimate of
the genetic distance between the two loci (see Morton
1955; Ott 1985). If, however, there are errors in the
parameters of the trait model assumed in the analysis,
there tends to be an upward bias in the estimate of the
genetic distance between the two loci (see Smith 1937;
Ott 1977, 1985; Clerget-Darpoux et al. 1986; Martinez
et al. 1989; Shields et al. 1991; Terwilliger and Ott
1994, exercise 5), as follows: There is a probability, v,
that a recombination occurs between the actual alleles
at the trait and marker loci, and there is a certain prob-
ability, e, that the recombination status of a meiosis is
misclassified (either a recombinant as a nonrecombinant
or vice versa) because of errors in the assignment of
trait-locus genotypes (see Smith 1937; Ott 1977, 1985).
If we assume that misclassification of recombination
status due to phenotype modeling errors is independent
of the inheritance of the actual alleles at the trait and
marker loci, the probability model shown in figure 2 is
obtained. If we allow for misclassifications in the ob-
served recombination status, the estimated recombina-
tion fraction would be , where Robsv̂ = R / (R � N )obs obs obs

and Nobs refer to the observed numbers of recombinant
and nonrecombinant meioses, respectively. The ex-
pected value of the recombination fraction is given by

. IfˆE[v] = P(R ) = v(1 � e) � (1 � v)e = v � e � 2ve e =obs

(i.e., there are no errors in recombination status), then0

and the estimate is unbiased. However, whenˆE[v] = v

and the loci are truly linked (i.e., ), there ise 1 0 v ! .5
a systematic upward bias in the estimate of the recom-
bination fraction, since .ˆE[v] 1 v

Complex-Valued Recombination Fractions and Mode-
of-Inheritance Errors

It is interesting to note that the formula derived above
for the expectation of in the presence of misclassifi-v̂

cation errors is equivalent to the formula for adding two
recombination fractions, v and , in the absence of in-e

terference (see Haldane 1919). Extrapolating from this
observation, one can think of as if it were analogouse

to a probability of recombination in a different “imag-
inary” direction, orthogonal to the chromosome (on
which loci are linearly constrained for biological rea-
sons). Since we are likely to have such misclassification
errors when studying “complex” phenotypes, it is ap-
pealing to represent recombination fractions in the pres-
ence of misclassification as “complex” numbers (i.e., re-
combination fractions in the complex plane): V = v �

(see fig. 3). The “real” component of correspondsei V

to the true probability (v) of recombination between the
actual trait- and marker-locus genotypes, whereas the
“imaginary” component of corresponds to the prob-V

ability ( ) of errors in the assumed disease-locus geno-e

types that result in misclassifications of recombinants
as nonrecombinants and vice versa. This “imaginary”
component is equivalent to the probability of “recom-
bination” between the actual disease-locus genotypes
and the inferred—and sometimes erroneous—disease-lo-
cus genotypes. In reality, we never know the true disease-
locus genotypes, and, as such, when we analyze recom-
bination between a locus predisposing to a complex
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Figure 4 Example pedigree for likelihood computation that uses
complex recombination fractions. The trait-locus genotypes are shown
as inferred for a fully penetrant dominant disease. See text for the
likelihood computation on this pedigree.

Figure 5 Misclassification of recombination status in the pres-
ence of errors in assumed meiotic informativeness. This figure shows
the relationship of the error component, , to misclassification of thee

recombination status and of meiotic informativeness. Note that the
meiotic informativeness refers to the parental trait-locus genotype,
whereas the observed recombination status refers to an offspring, in
whom trait-locus genotype errors may also have occurred. The pre-
sented error model is still valid, with .e = 0.5w � q(1 � w)

disease and a marker locus, the imaginary component
tends to be positive ( ). If , one is left with thee 1 0 e = 0
familiar real-valued recombination fraction, . If theV = v

marker locus were directly on top of the disease locus
( ) and all of the apparent recombinations were duev = 0
to errors in the trait-locus genotype assignments, the
recombination fraction would consist only of its imag-
inary component, . No matter what, the proba-V = ei
bility of recombination between the marker-locus geno-
types and the inferred trait-locus genotypes (including
misclassification errors) would be P(R ) = kVk = v �obs ts

. The subscript “ts” refers to “theta summing,”e � 2ve

to define this metric for converting the complex-valued
into a real-valued probability of apparent recom-V

binations, P(Robs) or in our notation. The usekVkts

of complex numbers makes the interpretation more sat-
isfying, since the “imaginary” component of the recom-
bination fraction owing to modeling errors is explicitly
allowed for.

To give an example of likelihood computation with
complex-valued recombination fractions, let us com-
pute the two-point likelihood for the pedigree shown
in figure 4. The trait-locus genotypes are shown as in-
ferred for a fully penetrant, dominant disease. The like-
lihood for this pedigree is given by

2( ) [ ]L v, e =0.5 (1 � e)(1 � v) � ev{complex

2[ ]� (1 � e)v � e(1 � v) }
2 2=0.5 1 � V � V( k k ) k k[ ]ts ts

=L V .(k k )traditional ts

This example demonstrates that v and are con-e

founded in two-point analysis, but, as will be shown
below, the two components become separable in mul-
tiple two-point and multipoint analysis.

The only effect of errors in inferred trait-locus gen-
otypes discussed so far was misclassification of the ge-
notype of children of parents with inferred genotype D/
� at the diallelic trait locus, since we implicitly focused
only on truly informative meioses. In reality, however,
not all meioses are informative for linkage, and errors
in inferring trait-locus genotypes of a parent can make
truly informative meioses (D/�) appear to be uninform-
ative (D/D or ��) and vice versa. Figure 5 shows that
our model also applies when one allows for misclassi-
fication of meiotic informativeness due to genotype er-
rors. In that figure, the previously introduced misclas-
sification probability, , of a true recombinant as ae

nonrecombinant, and vice versa, can be seen to be equal
to among meioses that are inferred to0.5w � q(1 � w)
be informative (w is the proportion of truly uninform-
ative meioses mistakenly assumed to be informative,
and q is the proportion of meioses from truly infor-
mative parents with misclassified recombination status).
Meioses assumed to be uninformative are, naturally, not
scored. This censoring of truly informative meioses does
not lead to a bias in the recombination fraction but
results in loss of information.

An implicit assumption made above is that the mis-
classification errors are independent for all meioses in
a study. If the trait-locus genotype of a parent is incor-
rectly inferred, however, the recombination status of all
of his children could be affected at the same time. In
the case of a diallelic disease locus, however, every ge-
notype error in a parent will lead to a change in meiotic
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Figure 6 Taxicab geometry. In “taxicab geometry,” only hori-
zontal and vertical movement on a grid is allowed, just like the move-
ment of a taxicab on a regular grid of city streets. The taxicab distance
between two points (A and B) is therefore the sum of the horizontal
and vertical distances between them, in this case . In contrast,2 � 1 = 3
in Euclidean geometry, where diagonal movement (“as the crow flies”)
is also allowed, the distance between these two points is 2 2�2 � 1 ≈

. A taxicab circle (with radius 2), consisting of points equidistant2.2
from its center (C), is also shown and looks like a square in Euclidean
space.

Figure 7 Complex map distance. Since recombination fractions
are not additive, it is useful to convert them into additive measures
of genetic map distance. Figure 7 is the analog in complex map-distance
space of figure 3 in complex recombination fraction space. For a given
value of the total recombination probability, , under the as-kVkts

sumption of and no directional orientation of v relative to othere � 0
marker loci, two edges of a right isosceles triangle are defined by the
set .{XF kXk = x(kVk )}ds ts

informativeness of that parent. Since meioses that are
assumed to be uninformative (assumed parental geno-
type D/D or �/�) are not analyzed, they contribute no
false inference of meiotic recombination status at all.
However, an uninformative parent whose genotype is
incorrectly inferred to be D/� will lead to 50% of his
children having their recombination status misclassified
( ), although whether or not misclassification oc-e = 0.5
curs is independent for each offspring. In reality, a frac-
tion of all meioses will have one true value of , whereas,e

for the remaining meioses, the misclassification prob-
ability will be . Such “heterogeneity” of the mis-e = 0.5
classification rate could be dealt with by use of methods
analogous to the way that heterogeneity of the recom-
bination fraction is allowed for in linkage analysis
(Smith 1963; Terwilliger 2000a). The effect of assuming
“homogeneity” of the misclassification parameter for
all meioses will be similar to the effect in sib-pair anal-
ysis of the use of the “mean test” (see Knapp et al. 1994)
rather than the “possible triangle test” (see Holmans
1993), for which the assumption of independence of the
meioses derived from the two parents (which underlies
the mean test) give locally optimal performance (Knapp
et al. 1994).

Because recombination fractions themselves are not
additive (even when constrained to the real line, i.e.,

), it is useful to transform these probability mea-e = 0
sures into additive map-distance measures. Under the
assumption of the Haldane (1919) mapping function,

, for simplicity, although any mapx(v) = �0.5 ln (1 � 2v)
function can, in principle, be used, the individual com-
ponents of the complex recombination fraction can be

converted into additive map-distance measures to give
the complex-valued distance vector ,X(V) = x(v) � x(e)i
with the real-valued map-distance metric being

(the subscript “ds” de-kX(V)k = x(v) � x(e) = x(kVk )ds ts

notes “distance summing,” to distinguish this measure
from the “ts” metric defined above in the complex prob-
ability space). The addition of v and is done under thee

assumption that misclassification is independent of ac-
tual recombination, since there is no biological reason
to assume otherwise.

The “ds” metric ( ) defines a well-ds = FdxF � FdyF
known metric space (Nahin 1998, p. 244) often referred
to as a taxicab geometry (Krause 1975), in which the
vector sum is the sum of the orthogonal vector lengths.
For a simple explanation of this metric, look at figure
6. Assume that a taxicab can only travel horizontally
or vertically on a regular grid of streets. The distance
from point A to point B is then the sum of the horizontal
and vertical distances for a total of blocks in2 � 1 = 3
this example. In contrast, the distance in Euclidean
space, which also allows diagonal movement (“as the
crow flies”), is . In any metric space, a2 2�2 � 1 ≈ 2.2
circle is defined as the set of all points equidistant from
some fixed point (the center of the circle; C in fig. 6;
see Buskes and van Rooij 1997). In taxicab geometry,
a circle looks like a Euclidean square, as described by
Krause (1975). By direct analogy, in our “ds” mode,
for any given value of the total recombination proba-
bility between marker and disease loci, , the set ofkVkts

all points equidistant from the fixed location of a
marker locus (a taxicab circle) would likewise look like
a square on the complex map-distance space. However,
adding the restriction that , with no directionale � 0
orientation of v relative to the other marker loci on
the chromosome, a taxicab semicircle, {XF kXk =ds

, would result, which looks like a right isoscelesx(kVk )}ts

triangle in Euclidean space (fig. 7).
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Figure 8 Two-point and multiple two-point linkage analysis. In two-point linkage analysis (A), errors in the recombination fractions
between each marker locus (M1, M2, M3) and the disease (D) are implicitly allowed through inflation of the recombination fraction estimate,
but this error component is not estimated separately. Since the recombination fractions are typically overestimated, the triangles (corresponding
to a specific map-distance estimate from each marker locus) are shown to extend beyond the true position of the trait locus. Not all triangles
intersect at the same position, because the estimate of is not constrained to be equal for the different marker loci. In multiple two-pointe

analysis without an error component (B), all triangles are forced to intersect on the chromosome at the assumed position of the disease gene,
because of linearity constraints. When the error component is incorporated into this type of analysis (C), the triangles are still forced to intersect
at the position of the trait locus—not necessarily on the chromosome but rather at some distance, , above in the error dimension.x(e)

Multiple Two-Point Analysis with Complex-Valued
Recombination Fractions

Figures 8A and 8B show two-point analysis and multiple
two-point analysis, respectively, in terms of taxicab cir-
cles centered around each marker locus. Notice that, in
two-point analysis (fig. 8A), the error components [eDi

or in complex map-distance space] are unconstrai-x(e )Di

ned [ , ] and are allowed to vary for dif-e � 0 x(e ) � 0Di Di

ferent marker loci. However, they are not estimated as
separate components but are absorbed by inflated re-
combination fraction/map-distance estimates ( ,kV kDi ts

). The true location of the disease locus is typicallykX kDi ds

inside the taxicab circles, as shown, because of the com-
mon overestimation of the recombination fraction, and
the taxicab circles of different marker loci therefore do
not normally intersect in one position on the chromo-
some. In multiple two-point linkage analysis (Morton
1988; Morton and Andrews 1989; Shields et al. 1991),
the recombination fraction, , is estimated betweenkVkts

each of a set of marker loci and the trait locus jointly,
subject to the constraints imposed by the marker-marker
linkage relationships. In other words, if the disease were
assumed to be at map position D in the figure, the value
of the recombination fraction between D and each of
the marker loci would be fully determined, and the two-
point LOD scores would be computed under these re-

strictions—that is, the taxicab semicircles from the two-
point analyses would be forced to intersect on the real
line, since is fixed at 0 (fig. 8B). The probability modele

for multiple two-point analysis is given in fig. 9A.
Extension of multiple two-point analysis to allow for

the “imaginary” component of the recombination frac-
tion vector to be 10 would be straightforward. Since

is independent of the marker loci and merely is ae

function of the errors in the assignment of disease-locus
genotypes, the actual value of parameter (not its es-e

timate) can be shown to be theoretically identical for
all marker loci used in the analysis. Thus, one additional
parameter would have to be estimated in this multiple
two-point approach with complex-valued recombina-
tion fractions. The real components, , of the complexvDi

recombination fractions, , would remain constrainedVDi

according to the chromosomal linkage map, whereas
the imaginary component, , would be allowed to bee

nonzero but be constrained to some constant value in
the analysis (equal for all marker loci). Thus, the max-
imum-likelihood estimates of the recombination frac-
tion between each marker locus and the trait locus
would be constrained to be , forkV k = v � e � 2evDi ts Di Di

each marker locus i. The corresponding taxicab circle
representation is shown in figure 8C. The taxicab circles
are now constrained only to intersect at some point in
the complex map-distance space at or above the as-
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Figure 9 Multiple two-point and multipoint linkage analysis
with complex recombination fractions. In multiple two-point linkage
analysis without an error component (A), the recombination fractions
between each marker locus and the disease locus are constrained by
the map. An error component, , can be incorporated into multiplee

two-point analysis, as shown in (B). The real recombination fractions
are again constrained, and only the error component—equal for all
marker loci—is estimated. The last two panels show multipoint anal-
ysis without (C) and with (D) the error component. (Note that v23 is
used in multipoint analysis instead of vD3 in multiple two-point anal-
ysis.) The information provided by all marker loci is collapsed into a
fictitious, highly informative marker locus at the assumed position of
the trait locus, and linkage analysis is then performed between this
hypothetical marker locus and the assigned trait-locus genotypes. In
conventional multipoint analysis (C), the recombination fraction be-
tween this fictitious marker locus and the trait locus is fixed at 0,
which is no longer the case when an error component is incorporated
into the model (D), as proposed.

sumed disease locus. If the imaginary component were
estimated to be , then all of the pairwise recom-e = 0.5
bination fractions would be 0.5 as well, according to
the “ts” metric defined above. The probability model
for “complex” multiple two-point analysis is shown in
figure 9B.

Multipoint Analysis in the Complex Plane

If one considers the three marker loci shown in figures
8 and 9 (locus order M1-D-M2-M3), then the recombi-
nation status of the interval between D and M2 would
also provide information about the recombination status
between the disease and M3. Multipoint linkage analysis
(Lathrop et al. 1984; Lander and Green 1987) takes this
into account by analyzing recombination among all
marker loci jointly. The probability model of multipoint
analysis without an error component is shown in figure
9C. The likelihood of a meiosis with, say, a recombi-
nation between M1 and D, a recombination between D

and M2, and no recombination between M2 and M3

would be , under the assumption of ab-v v (1 � v )D1 D2 23

sence of interference. Under the null hypothesis of no
linkage, the likelihood would be 0.5(1 � v )(1 � v )12 23

(because the assumed locus order then is M1-M2-M3,
with D on another chromosome), and the likelihood
ratio reduces to

( )L linkage v v (1 � v ) v vD1 D2 23 D1 D2= = ,
( )L no linkage 0.5(1 � v )(1 � v ) 0.5(1 � v )12 23 12

which is only a function of the recombination fractions
with the marker loci adjacent to the disease locus. (It
should be noted that when the flanking marker loci are
uninformative, the other marker loci do provide infor-
mation about linkage but only indirectly, through their
relationship to both the uninformative marker loci and
the disease locus.) Analogous results can be obtained for
the other possible multilocus recombination events. For
this example, as (and therefore also andv r 0 v r 012 D1

), this likelihood ratio would approach 0, andv r 0D2

the corresponding LOD score would go to ��, since the
disease locus is observed to recombine with each of the
flanking marker loci, which is not possible when the
recombination fractions are 0 and misclassification is not
allowed.

In extending multipoint analysis to complex-valued
recombination fractions (the probability model is
shown in fig. 9D), one must allow for the two possible
explanations of the observed meiosis above. Either there
were true recombinations between both M1 and D and
between D and M2 and no misclassification error, or
else there was no recombination in either of the two
intervals but an error in the trait-locus genotype as-
signment led to both apparent recombination events.
The likelihood would then be (1 � e)v v (1 � v ) �D1 D2 23

under the hypothesis of link-e(1 � v )(1 � v )(1 � v )D1 D2 23

age at a given map position between marker loci M1

and M2. Under the null hypothesis of no linkage, the
likelihood would again be 0.5(1–v12)(1–v23), as above.
The resulting likelihood ratio for this specific type of
meiosis, after cancellation of the term (1–v23), would be

( )L linkage (1 � e)v v � e(1 � v )(1 � v )D1 D2 D1 D2=
( )L no linkage 0.5(1 � v )12

(1 � e)v v � e(1 � v )(1 � v )D1 D2 D1 D2= .
0.5v v � 0.5(1 � v )(1 � v )D1 D2 D1 D2

In this case, since the distance between the marker loci
goes to 0, the likelihood ratio approaches , and thee/0.5
corresponding LOD score would thus be as long1 ��
as .e 1 0

Notice that is the same as the likelihood ratioe/0.5
(in one recombinant meiosis) in a two-point analysis
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Figure 10 Effect of the misclassification parameter on the expected 3-LOD-unit support interval for the disease locus. The effect ofe

allowing for nonzero values of in the analysis is shown graphically, plotted as the ratio of the mean width of the 3-LOD-unit support intervale

(S.I.) for the disease locus for given values of to the expected width of the interval for the traditional multipoint LOD score in the absenceê

of trait-locus genotype assignment errors. Allowing for misclassifications greatly increases the width of the interval to which the disease gene
can be localized. See Terwilliger 2000b for more details.

with an informative marker locus positioned directly at
the assumed genomic location of the disease gene, where

, as described above. A general proof of thekVk = ets

equivalence of multipoint linkage analysis in the com-
plex plane to traditional two-point linkage analysis is
given in the Appendix. The only difference between
“complex” multipoint analysis and two-point analysis
is that data from multiple linked marker loci are jointly
used to estimate the segregation pattern of chromoso-
mal position x, rather than the single-marker locus at
that position. The pointwise distribution of both LOD
scores are identical. The genomewide behavior of this
distribution has been described in detail (Dupuis et al.
1995; Lander and Kruglyak 1995; Terwilliger et al.
1997). By contrast, the conventional multipoint LOD
score can be written in terms of ase log [L(e =10

for the same fixed map position x.0, x)/L(e = 0.5, x)]
Because of the lack of freedom in the alternative hy-
pothesis, the hypotheses are not properly nested, and
the distribution of the conventional multipoint LOD
score, both pointwise and genomewide, is thus not well
defined (see Terwilliger 2000b).

There is a penalty to be paid by “complex” multipoint
analysis in comparison with conventional multipoint
analysis, however, since the “complex” multipoint LOD
score is always at least as large as its real-valued analog,
owing to the existence of this extra parameter. A genome
scan is not really a hypothesis-testing experiment, be-
cause nobody considers the null hypothesis to be that
there is no gene. Rather, a genome scan is an estimation

problem, where one attempts to localize the genomic
position of the disease gene(s). The effect of allowing
for nonzero values of in the analysis is to increase thee

size of the 3-LOD-unit support interval to which a dis-
ease gene might be localized. If the trait-locus genotypes
were known without error, in M informative meioses,
the expected width of the support interval would be
200/M cM, whereas, if one allows for trait-locus ge-
notype errors by means of the misclassification param-
eter , the expected width of this support interval woulde

be a function of the estimate of at the estimated mape

location of the disease gene. In figure 10, this relation-
ship is graphed as the ratio of the mean width of the
3-LOD-unit support interval for given values of to theê

expected width of the support interval for the tradi-
tional multipoint LOD score in the absence of trait-
locus genotype-assignment errors (see Terwilliger 2000b
for further discussion of the genomewide properties of
“complex” multipoint LOD scores). It should be noted
that a single meiosis that is inferred falsely to be an
obligate recombinant leads to an exclusion of the true
location of the disease gene in conventional multipoint
analysis, making the cost of adding this extra parameter
minuscule compared with the cost of not allowing for
it at all.

Robustness of Multipoint Analysis with Complex
Recombination Fractions

In traditional multipoint linkage analysis (without al-
lowance for an imaginary error component in the re-
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combination fraction), it is well known that errors in
the genotype assignment at the disease-predisposing lo-
cus tend to push the disease “off the map” and lead to
false exclusions of the true map position of the disease
(see Risch and Giuffra 1992). This happens because,
when the magnitude of the imaginary component of the
recombination fraction is improperly assumed to be 0,
all “imaginary recombination events” (due to improp-
erly assigned trait-locus genotypes) appear as double re-
combinants on the real line of the chromosome. This in
turn leads to false exclusions of linkage (negative LOD
scores) at the true location of the disease locus. In com-
parison, two-point analysis is more robust to model er-
rors (see Risch and Giuffra 1992). The reason is that
false apparent recombinations can be absorbed in an
inflated estimate of the recombination fraction, since the
two components of the recombination fraction are com-
pletely confounded in two-point analysis. Because two-
point analysis and multipoint analysis in the complex
plane are equivalent, multipoint analysis, through the
use of complex-valued recombination fractions, can be
performed with the same degree of robustness to model
errors at the trait locus as two-point analysis.

Discussion

In this article, an overview has been given of the role of
mode-of-inheritance parameters in likelihood-based
linkage analysis and of the effects of errors in these pa-
rameters on such methods. Since these parameters are
never known with accuracy, particularly for complex
traits—in which case they are not even particularly
meaningful—it is important to develop methods that
deal with the consequences of misspecifications in these
parameters analytically. Here, recombination fractions
defined in the complex number system, , are used to1C
model the effects of errors in the assumed disease model,
which can result in misclassification of the meiotic re-
combination status. Although marker-locus genotypes
were implicitly assumed to be known with accuracy
throughout this article, they are, of course, also subject
to errors. Some of these errors can be treated in a similar
manner, as described in the companion article (Göring
and Terwilliger 2000a). Other types of errors associated
with marker loci and their map can be accommodated
through the use of profile likelihoods (Göring and Ter-
williger 2000b), with or without conjunction to the com-
plex-valued recombination fractions described in this
article.

Risch and Giuffra (1992) originally proposed to cir-
cumvent the problems imposed by inaccuracies in the
genotype assignment in “model-based” linkage analysis
by specifying mode-of-inheritance models that led to
less deterministic assignment of trait-locus genotypes on
the basis of the observed phenotypes (i.e., “weak” mod-

els with low penetrance, high phenocopy rate, and/or
high disease-allele frequency, leaving great ambiguity
about the trait-locus genotypes). This approach does
indeed diminish the risk of false-negative results in mul-
tipoint analysis but also leads to substantial loss of
power (Clerget-Darpoux et al. 1986; Göring and Ter-
williger 2000c). As the model becomes increasingly
weaker, this ultimately results in the situation where the
trait-locus genotypes of all pedigree members are com-
pletely unknown, in which case a pedigree provides no
linkage information whatsoever. The reason why the
risk of finding false-negative results is reduced by a
“weak” model is that the prior probability of each ad-
missible constellation of trait-locus genotypes would
not differ that much, and, thus, when maximizing the
overall likelihood over the recombination fraction, the
posterior probability of each trait-locus genotype com-
bination can be greatly affected by the observed marker-
locus data. In contrast, when a strong genotype-
phenotype relationship is assumed, the posterior prob-
ability of each trait-locus genotype constellation is dom-
inated by the prior.

Throughout this article, we have described complex-
valued recombination fractions in the context of
“model-based” linkage analysis. However, the approach
is also directly applicable to “model-free” methods, as
shown elsewhere (Göring and Terwilliger 2000c). In
fact, this proposal developed from an attempt to com-
pare multipoint “model-based” and “model-free” meth-
ods, to understand why the latter is often claimed to be
more robust than the former. The difference in robust-
ness is due to the fact that “model-free” multipoint
methods implicitly allow for an error component in the
recombination fraction (e.g., Kruglyak and Lander
1995; Almasy and Blangero 1998), for the reason that
the estimated parameter is typically not expressed as a
recombination fraction (Göring and Terwilliger 2000c;
Terwilliger and Göring 2000). Complex-valued recom-
bination fractions are thus not only a means by which
“model-based” multipoint analysis can be performed in
a way that has the same robustness to model errors as
two-point analysis, as shown in this article, but, in ad-
dition, the equivalence of most of the popular “model-
free” analysis methods to certain forms of “model-
based” analysis can be extended from the two-point
case to the multipoint situation through the use of com-
plex-valued recombination fractions (see Knapp et al.
1994; Trembath et al 1997; Göring and Terwilliger
2000c).
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Appendix

Proof of Equivalence of “Complex” Multipoint LOD-Score Analysis and Traditional Two-Point LOD-Score Analysis

Theorem: The “complex” multipoint LOD score is equivalent to the conventional two-point LOD score.
Proof: Let us assume that we want to test whether the disease locus (D) is at position x in the genome, flanked

by two marker loci (M1 and M2) at recombination fractions and , respectively. The distance between markerv vx1 x2

loci M1 and M2 is , under the assumption of absence of interference (Haldane 1919). Underv = v � v � 2v v12 x1 x2 x1 x2

the null hypothesis, the disease locus is unlinked to the marker-locus map ( ), whereas, under the alternativev = 0.5D1

hypothesis, the disease locus is at position x. The only way to observe recombination would be if disease-locus
genotypes were misclassified, and thus P(recombination between x and D . The eight possible meiotic types are) = e

shown in table 1. In table 1 (top), the probability of each outcome is given under the hypothesis that the disease
locus is at position x, and in table 1 (bottom) the probability of each outcome is given under the hypothesis that
the disease locus is unlinked to the marker-locus map ( ).v = 0.5D1

Proposition 1: The “complex” multipoint LOD score is equivalent to the “complex” two-point LOD score.
Proof: The “complex” multipoint LOD score can be written as follows:

ˆL v , v , e( )x1 x2
ˆ( )Z x,e = log10 L v ,v ,v = 0.5( )x1 x2 D1

Y �Y Y �Y Y �Y Y �Y Y �Y �Y �Y Y �Y �Y �Y1 5 2 6 3 7 4 8 1 2 3 4 5 6 7 8ˆ ˆ(1 � v )(1 � v ) (1 � v )v v (1 � v ) v v 1 � e e[ ] [ ] [ ] [ ] ( ) ( )x1 x2 x1 x2 x1 x2 x1 x2
= log10 Y �Y Y �Y Y �Y Y �Y Y �Y �Y �Y �Y �Y �Y �Y1 5 2 6 3 7 4 8 1 2 3 4 5 6 7 8(1 � v )(1 � v ) (1 � v )v v (1 � v ) v v 0.5[ ] [ ] [ ] [ ] ( )x1 x2 x1 x2 x1 x2 x1 x2

Y �Y �Y �Y Y �Y �Y �Y1 2 3 4 5 6 7 8ˆ ˆ1 � e e( ) ( )
= log .10 Y �Y �Y �Y �Y �Y �Y �Y1 2 3 4 5 6 7 80.5( )

If “complex” two-point linkage analysis were done with a single-marker locus directly at position x, the meiosis
types shown in table 1 (top) would be completely described by using only the last column, the recombination status
between position x and the disease locus. In “complex” two point analysis, the frequency of an observed recom-
bination between a marker locus (at position x) and the trait locus would be . Writing out thekVk = v � e � 2vets

“complex” two-point LOD score, we obtain

L( V )k k ts
Z( V ) = logk k 10ts L( V = 0.5)k k ts

Y �Y �Y �Y Y �Y �Y �Y1 2 3 4 5 6 7 81 � V V( k k ) (k k )ts ts
= log10 Y �Y �Y �Y �Y �Y �Y �Y1 2 3 4 5 6 7 80.5( )

Y �Y �Y �Y Y5�Y6�Y7�Y81 2 3 4max 1 � v � e � 2ve v � e � 2ve[( ) ( ) ]v,e
= log .10 Y �Y �Y �Y �Y �Y �Y �Y1 2 3 4 5 6 7 8(0.5)

Because one cannot separate the components v and in , we can arbitrarily set and thus eliminate onee kVk v = 0ts

parameter from the equation, as follows:

Y �Y �Y �Y Y �Y �Y �Y1 2 3 4 5 6 7 8ˆ ˆ ˆL V L e, v = 0 1 � e e(k k ) ( ) ( ) ( )ts
Z V = log = log = log .k k( ) 10 10 10 Y �Y �Y �Y �Y �Y �Y �Yts 1 2 3 4 5 6 7 8L V = 0.5 L e = 0.5, v = 0 0.5(k k ) ( ) ( )ts
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Table 1

List of all possible meiotic types, and their probabilities, for analysis of a
disease locus (D) and two linked marker loci (M1, M2), for the alternative
hypothesis of linkage (top) and the null hypothesis of no linkage (bottom).

MEIOTIC TYPE

RECOMBINATION STATUS IN

INTERVAL (LOCUS ORDER

M1-(x, D)-M2)

PROBABILITYM1-x x-M2 x-D

Y1 N N N (1 � e)[1 � v )(1 � v )]x1 x2

Y2 N R N (1 � e)[(1 � v )v ]x1 x2

Y3 R N N (1 � e)[v (1 � v )]x1 x2

Y4 R R N (1 � e)[v v ]x1 x2

Y5 N N R e[(1 � v )(1 � v )]x1 x2

Y6 N R R e[(1 � v )v ]x1 x2

Y7 R N R e[v (1 � v )]x1 x2

Y8 R R R e[v v ]x1 x2

RECOMBINATION STATUS IN

INTERVAL (LOCUS ORDER

D)M1-(x)-M2; )v = 0.5D1

D–M1 M1–x x–M2

Y1 N N N 0.5[(1 � v )(1 � v )]x1 x2

Y2 N N R 0.5[(1 � v )v ]x1 x2

Y3 R R N 0.5[v (1 � v )]x1 x2

Y4 R R R 0.5[v v ]x1 x2

Y5 R N N 0.5[(1 � v )(1 � v )]x1 x2

Y6 R N R 0.5[(1 � v )v ]x1 x2

Y7 N R N 0.5[v (1 � v )]x1 x2

Y8 N R R 0.5[v v ]x1 x2

This is exactly the same formula as for the “complex” multipoint LOD score.
Proposition 2: The “complex” two-point LOD score is equivalent to the conventional two-point LOD score.
Proof: The “complex” two-point LOD score, however, can also be formulated under the condition where, rather

than arbitrarily setting and letting vary, and v is allowed to vary, as follows:v = 0 e e = 0

Y �Y �Y �Y Y �Y �Y �Yˆ ˆ ˆ1 2 3 4 5 6 7 8L V L e = 0, v 1 � v v(k k ) ( ) ( ) ( )ts
Z V = log = log = log .k k( ) 10 10 10 Y �Y �Y �Y �Y �Y �Y �Yts 1 2 3 4 5 6 7 8L V = 0.5 L e = 0, v = 0.5 0.5(k k ) ( ) ( )ts

This formula, however, is exactly the same as for the conventional two-point LOD score between a marker locus
at position x and a disease locus, with no allowance for misclassification.

By proposition 1, the “complex” multipoint LOD score was shown to be equivalent to the “complex” two-point
LOD score, and by proposition 2, the “complex” two-point LOD score was shown to be equivalent to the con-
ventional two-point LOD score. It follows directly that the “complex” multipoint LOD score is equivalent to the
conventional two-point LOD score. The only difference is that the multipoint LOD score may be able to use more
information—by using additional marker loci to determine the inheritance of position x—to determine the recom-
bination status between position x and the inferred disease-locus genotypes.
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